A characterization of the base-matroids of a graphic matroid
نویسندگان
چکیده
Let M = (E,F) be a matroid on a set E, and B one of its bases. A closed set θ ⊆ E is saturated with respect to B when |θ ∩B| = r(θ), where r(θ) is the rank of θ. The collection of subsets I of E such that |I ∩ θ| ≤ r(θ) for every closed saturated set θ turns out to be the family of independent sets of a new matroid on E, called base-matroid and denoted by MB . In this paper we prove that a graphic matroid M , isomorphic to a cycle matroid M(G), is isomorphic to MB , for every base B of M , if and only if M is direct sum of uniform graphic matroids or, in equivalent way, if and only if G is disjoint union of cacti. Moreover we characterize simple binary matroids M isomorphic to MB , with respect to an assigned base B.
منابع مشابه
Base exchange properties of graphic matroids
New base exchange properties of binary and graphic matroids are derived. The graphic matroids within the class of 4-connected binary matroids are characterized by base exchange properties. Some progress with the characterization of arbitrary graphic matroids is made. Characterizing various types of matroids by base exchange properties is e.g. important in invariant theory.
متن کاملStructural properties of fuzzy graphs
Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...
متن کاملCHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS
An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.
متن کاملForbidden-minor characterization for the class of graphic element splitting matroids
This paper is based on the element splitting operation for binary matroids that was introduced by Azadi as a natural generalization of the corresponding operation in graphs. In this paper, we consider the problem of determining precisely which graphic matroids M have the property that the element splitting operation, by every pair of elements on M yields a graphic matroid. This problem is solve...
متن کاملQuasi-graphic matroids
Frame matroids and lifted-graphic matroids are two interesting generalizations of graphic matroids. Here we introduce a new generalization, quasi-graphic matroids, that unifies these two existing classes. Unlike frame matroids and lifted-graphic matroids, it is easy to certify that a matroid is quasi-graphic. The main result of the paper is that every 3-connected representable quasi-graphic mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Contributions to Discrete Mathematics
دوره 5 شماره
صفحات -
تاریخ انتشار 2010